

DNSSEC in the Reverse Tree @LACNIC

Arturo Servín -- @the_real_r2d2 Carlos Martinez -- @carlosm3011

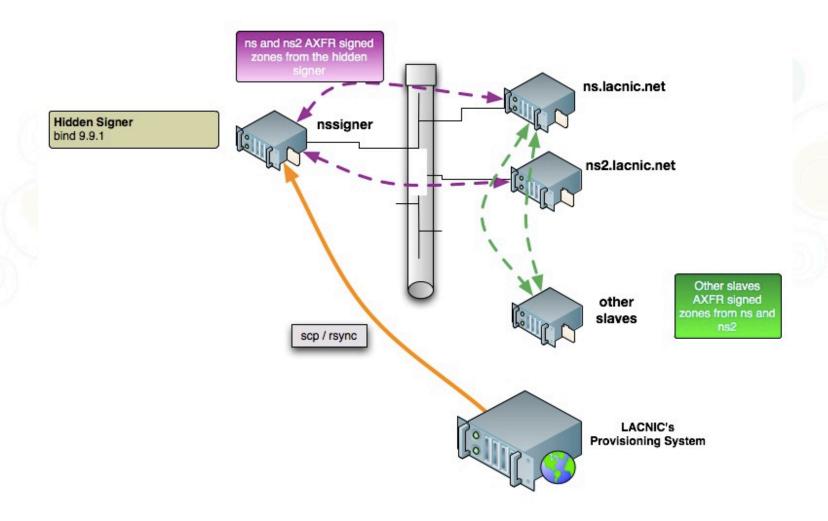
Why DNSSEC?

- Securing the DNS system is both necessary and, right now, doable
 - Root signed since 2010
 - No excuses!
- A signed DNS tree can also be an enabler for new applications
 - DANE WG
- DNSSEC does not solve _every_ problem in the DNS system
 - But it certainly helps a lot

DNSSEC @LACNIC: Timeline

- 4Q 2010 2Q 2011
 - Training, study, tool testing
- 3Q 2011 1Q 2012
 - Experimental zone signing
 - <lacnic>.ip6.arpa
 - A few forward zones
 - Trial key rollovers and technical definitions
- 4Q 2012 1Q 2013
 - Reverse zones signed in production

DNSSEC @LACNIC: Status


- Status of DNSSEC in the reverse tree
 @LACNIC:
 - Reverse zones for IANA-allocated LACNIC space signed
 - ERX / Legacy depending on majority holder
 - DS records from members
 - Currently we can insert DS records manually, for testing purposes
 - Provisioning system support for DS records for 2Q 2013

Signer Architecture

Hidden signer plus public masters

Final Remarks

- The root is signed! Make good use of it!
 - No need for static, out-of-band trust anchors
 - Making the DNS more secure is our duty as technical community
- Useful signing performance is possible even with commodity hardware
 - Unless your zones are really huge
- NSEC vs NSEC3 in the reverse space?
 - NSEC3 doesn't seem to make a lot of sense here

THANK YOU!

